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Abstract
It is incontrovertible that involvement of memory has a great impact in inventory 
model. For any company, long past experience as well as short past experience 
have similar significant importance to manage the profit. Our proposed inventory 
model is leaded by two important factors: constant demand and deterioration. Here, 
we have introduced memory effect through the feasible ideas of fractional calculus. 
Also, we consider the order of fractional derivative as memory index. We calcu-
late various type of costs viz total holding cost, purchasing cost, deterioration cost, 
shortage cost, salvage value. Additionally, optimal ordering interval, optimal start-
ing shortage time and minimized total average cost are computed theoretically using 
the fractional calculus techniques. Effect of memory is justified by choosing a suita-
ble numerical example. Finally sensitivity analysis for the model has been presented.
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1  Introduction

Fractional Calculus (FC), generalization of traditional classical differentiation, 
integration and differential equation [17], is a most emerging tool for the recent 
research in the field of mathematics. Due to the insufficiency of logical inter-
pretation of fractional-order differential equations, the FC had been employed 
extremely infrequently until a few days ago. Now a days, FC is successfully used 
to address challenging issues in science and technology due to its enormous 
knowledge expansion. Although, the formulation of basic ideas and their physical 
interpretations are constantly being modified. FC can interpret physical occur-
rence in its generalized form quite effectively. According to [8, 14, 17], Fractional 
Differential Equation (FDE) has some of the most useful features and aspects for 
solving many complex problems found in everything viz applied sciences and 
real-world problems. Keeping past effects of past events is the most significant 
physical acceptability of FC. In order to describe physical problems naturally and 
realistically, the effects of past events cannot be overlooked while defining the 
current situation. In biology and economics, FC has been utilized as a perfect 
tool for understanding mathematically the effect of memory measured by mem-
ory index defined by the fractional order derivatives [28–32]. It has been estab-
lished as the most powerful mathematical method to understand our true nature. 
Thereby, numerous researchers are working in the attraction of FC for last three 
decades.

The literature review on inventory management began decades ago. The study 
of inventory management has recently emerged as one of the primary subfields 
of operation research. Demand pattern is important in the inventory model and 
is thoroughly researched by various researchers. Jana and Das [13] have dis-
cussed an inventory model where the demand depends on stock and deterioration 
occurred. Mishra and Saha [18] reported the inventory model with time depend-
ent demand. Dye et  al.  [9] worked on the inventory model where the demand 
is time-varying and partial backlogging is shortage-dependent. Also, [11, 12] 
considered time varying demand in his inventory models. There is no doubt that 
deterioration [6] has a substantial impact on the whole inventory system. Deterio-
ration happens in various ways, such as melting, damage, decay, etc. The inven-
tory systems are developed in the consideration of constant deterioration with the 
demand, dependent on time [10, 16], dependent on stock [13, 33], dependent on 
price [26], etc. Singh and Pattnayak [27] introduced the variable deterioration in 
inventory model. Researchers (like [16, 22]) have examined the effects of item 
shortage. Partial backlogging is another important component in an inventory 
system and is reported by [1, 2], and [27] with a variety of intriguing outcomes.

Demand from buyers is influenced by seller behaviour, delivery time, prod-
uct quality, and pricing. The purchase of a product by a customer relies upon 
the product’s past history. The customers do not intend to buy the product with 
poor feedbacks. So, in a business policy, memory i.e. past experience has a tre-
mendous impact and must be included in the development of strategic quality 
business policy. In contrast to our standard differential equation of integer order, 
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the most significant benefit of FDE is that it can be used as a perfect tool to more 
accurately characterize the dynamical behavior of any system with the implicit 
incorporation of the idea of memory.  Das and Roy [3–5], Das et  al. [7]  have 
reported the potential use of FC in a variety of inventory models and established 
several hypotheses. Pakhira et al. [19–21] attempted to apply the memory idea to 
an inventory system with the help of FC. Jana and Das [13] imposed memory in 
an inventory model with stock dependent demand. They have reported that their 
modified inventory model can be treated as an effective and efficient real world 
realistic optimization problem. Very recently, Rahaman et  al.  [25] have studied 
an inventory management problem where they have reported that how a retailer’s 
decision is influenced by the memory. In another recent paper, Kumar et al. [15] 
proposed the influential role of memory effect of promotional efforts in an inven-
tory system through the study of FC with time-dependent demand. Thereby, we 
are motivating to study the effect of memory on an inventory model for deterio-
rating item with fractional calculus approach. Shortage is natural phenomena in 
an inventory system and it plays a significant role in the optimization of profit. It 
is not yet been investigated in the presence of memory effect how starting short-
age time effects on the minimized total average cost in an inventory system. It has 
inspired us to look into the starting shortage time in an inventory system.

Our goal is to improve the performance of our current inventory models by includ-
ing the effect of memory or prior experience. Here the memory effect is considered 
on an inventory model with constant demand and deterioration. Shortages occurs after 
some time period. Our objective is that to find out the optimum ordering interval and 
optimum starting shortage time for which the total average cost is minimum when an 
inventory system is subjected to memory effects via a differential equation of fractional 
order. To incorporate memory effect, we use FC. Here we consider fractional order 
derivative as memory index. Fractional order derivative, integration and FDE, pro-
vided by Podlubny [23] and Miller and Ross [17], are used to calculate theoretically 
total holding cost, purchasing cost, deterioration cost, shortage cost, salvage value, opti-
mal ordering interval, optimal starting shortage time and minimized total average cost. 
Mainly we want to explore in the presence of memory effect how the starting shortage 
time effects on minimized total average cost.

The article then goes on as follows:
Some mathematical preliminaries and definitions is presented in Sect.  2. Long 

memory effect and short memory effect are discussed here. Section 3 presents the crea-
tion of the classical inventory model with “notation” and "assumption". The general-
ized inventory model for deteriorating item with fractional order is introduced herein 
Sect. 4. The solutions and analysis of the formulated inventory model with fractional 
order are presented in the preceding. Also in this section various relevant costs are 
calculated. Section 5 discusses the numerical illustration of the suggested model, and 
Sect. 6 is concluded with a conclusion.
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2 � Some mathematical preliminaries and definitions

Fractional derivative has numerous definitions. They each have their own unique 
physical interpretation [24]. We will introduce the Riemann–Liouville definition 
and the Caputo definition of fractional derivative in this section. Moreover, the 
fractional Laplace transform method is also  introduced  to develop the article. 
These are briefly described in the following.

2.1 � Riemann–Liouville (R–L) fractional derivative

The definition of Riemann–Liouville (R–L) fractional derivative of order � 
(where m ≤ 𝛼 < m + 1 ) for a integrable function f(x) defined on [a, b] is denoted 
by RL

a
D�

x
(f (x)) and is defined by

The above definition is known as the left R–L � th order fractional derivative and the 
definition of right R–L �th order fractional derivative is as follow,

The aforementioned finding establishes a distinction between fractional derivatives 
and ordinary derivatives. For any differentiable functions, M Caputo offered a new 
concept of fractional order derivative to eliminate this discrepancy.

2.2 � Caputo type fractional order derivative

The definition of Caputo fractional derivative of order � (where m ≤ 𝛼 < m + 1 ) 
for a integrable function f(x) defined on [a,  b] is denoted by C

a
D�

x
(f (x)) and is 

defined by

Only differentiable functions are suitable to the Caputo type fractional derivative. 
However, the fractional derivative for a constant function is zero according to Capu-
to’s definition. Additionally, the initial as well as boundary conditions must be iden-
tical to those of a classical i.e, integer order differential equation in order to solve 
Caputo type fractional order differential equations.

RL
a
D�

x
(f (x)) =

1

Γ(m + 1 − �)

(
d

dx

)m+1

∫
x

a

(x − �)m−�f (�)d�.

RL
x
D�

b
(f (x)) =

1

Γ(m + 1 − �)

(
−

d

dx

)m+1

∫
b

x

(x − �)m−�f (�)d�.

C
a
D�

x
(f (x)) =

1

Γ(m + 1 − �) ∫
x

a

(x − �)m−�f (m+1)(�)d�.
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2.3 � Fractional Laplace Transform (FLT) method

In differential equations of integer and fractional order, the Laplace 
Transform(LT) is crucial. F(s) ( where s > 0 ) denotes the LT for the function f(t) 
and F(s) is defined by

Also, L(f r(t)) denotes the LT for the the function f r(t) and is defined by

where the r-th order integer derivative of f(t) is f r(t) . For the �th order fractional 
derivative of f(t), the FLT is denoted by L(f �(t)) and is defined by

where r − 1 < 𝛼 ≤ r.

2.4 � Mittag‑Leffler function

In the theory of differential equations of integer order, the exponential function, 
ez , is crucial. Its single parameter generalization, the function is indicated by 
E�(z) and is defined by

Also, a two-parameter Mittag-Leffler type function is defined as follows,

2.5 � Long memory effect

The memory strength is controlled by fractional order derivative. If the order of 
the fractional derivative lies in (0, 0.5). Then the system is called of long memory 
effected.

F(s) = L(f (t)) = ∫
∞

0

e−stf (t)dt.

L(f r(t)) = srF(s) −

r−1∑
p=0

sr−p−1f p(0),

L(f �(t)) = s�F(s) −

r−1∑
p=0

spf �−p−1(0),

E�(z) =

∞∑
k=0

Zk

Γ(�k + 1)
.

E�,�(z) =

∞∑
k=0

Zk

Γ(�k + �)
.
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2.6 � Short memory effect

If the order of fractional derivative lies in [0.5, 1). Then the system is called of short 
memory effected.

3 � Classical inventory model

On the basis of the assumptions given below, we prepare the classical inventory 
model (Fig. 1).

3.1 � Notations

To develop the proposed generalized model, the following notations are being made: 

	 (i)	 a: Constant demand rate per unit time during the cycle.
	 (ii)	 q(t): Inventory level at time t.
	 (iii)	 C1 : Constant inventory holding cost per unit quantity per unit time.
	 (iv)	 C2 : Constant purchasing cost of per unit item per unit time.
	 (v)	 C3 : Constant deteriorating cost of per unit item per unit time.
	 (vi)	 C4 : Per unit shortage cost per unit item per unit time.
	(vii)	 C� : Salvage value parameter per unit, associated with deteriorated units during 

the cycle time.
	(viii)	 � : Constant deterioration rate, units/unit time, where 0 < 𝜃 << 1.
	 (ix)	 A: Constant ordering cost
	 (x)	 t1 : Time at which shortage start ( t1 > 0).
	 (xi)	 T: Length of each ordering cycle.
	(xii)	 W: Initial inventory level for each ordering cycle.
	(xiii)	 S: Maximum amount of demand backlogged for each ordering cycle.
	(xiv)	 Q: Economic order quantity for each ordering cycle.
	(xv)	 HC�(T , t1) : Total Holding cost per cycle.

Fig. 1   Graphical representation of the inventory model
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	(xvi)	 PC�(T , t1) : Total Purchasing cost per cycle.
	(xvii)	 DC�(T , t1) : Total Deteriorating cost per cycle.
	(xviii)	SC�(T , t1) : Total Shortage cost per cycle.
	(xix)	 SV�(T , t1) : Total Salvage value of deteriorated item.
	(xx)	 TC�(T , t1) : Total Inventory cost per cycle.
	(xxi)	 TAC�(T , t1) : Total average Inventory cost per unit time per cycle.
	(xxii)	 T∗ : Optimal value of T.
	(xxiii)	TAC∗

�
 : Minimized total average cost.

	(xxiv)	Γ(.) : Gamma Function.
	(xxv)	 E�(z) : Mittag-Leffler Function with one parameter.

3.2 � Assumptions

To develop the proposed generalized model, the assumptions which are being made is 
given below: 

1.	 A single item is considered over the fixed period T which is subject to a constant 
deterioration rate.

2.	 There is no replenishment or repair of deteriorated items takes place in a given 
cycle.

3.	 The consumption rate or demand rate at any time t is constant.
4.	 The planning horizon is infinite. Only a typical planning schedule of length is 

considered and all the remaining cycles are identical.
5.	 The replenishment occurs instantaneously at an infinite rate and lead time is zero.
6.	 The holding cost per unit, purchasing cost per unit, shortage cost per unit, dete-

riorating cost per unit, salvage value per unit item are constant.
7.	 The ordering cost is constant.
8.	 Shortages are allowed during stock out period and are completely backordered.

4 � Generalized inventory model

We consider the fractional order generalized inventory model with constant demand. 
Replenishment occurs at time t = 0 when the inventory level attains its maximum, 
W. From t = 0 to t1 , the inventory level reduces due to demand and deterioration. At 
time t1 , the inventory level achieves zero, then shortage is allowed to occur during the 
time interval [t1, T] , and all of the demand during shortage period [t1, T] partially back-
logged. As the inventory level reduces due to demand rate as well as deterioration dur-
ing the inventory interval [t1, T] . Therefore, the behavior of this inventory system at any 
time t can be represented by the following picture:

Based on the above description, during the time interval [0, T] the differential equa-
tion representing the proposed inventory status is given by

(1)
d(q(t))

dt
+ �q(t) = −a for 0 ≤ t ≤ t1,
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with q(0) = W , q(t1) = 0 , q(T) = −S.
Equations (1), (2) can be written in terms of Caputo fractional derivative sense 

as

Solving the Eq. (3) with the initial condition q(0) = W and using the Laplace trans-
form method for solving fractional differential equation we get,

q(t1) = 0 gives

W =
at�

1

[
1

Γ(�+1)
−

�t�
1

Γ(2�+1)
+

�2 t2�
1

Γ(3�+1)

]
[
1−

�t�
1

Γ(�+1)
+

�2 t2�
1

Γ(2�+1)

] ,

= at
�
1

[
1

Γ(�+1)
−

�t�
1

Γ(2�+1)
+

�2t2�
1

Γ(3�+1)

][
1 −

(
�t�

1

Γ(�+1)
−

�2t2�
1

Γ(2�+1)

)]−1
,

= at
�
1

[
1

Γ(�+1)
−

�t�
1

Γ(2�+1)
+

�2t2�
1

Γ(3�+1)

][
1 +

�t�
1

Γ(�+1)
−

�2t2�
1

Γ(2�+1)
+

(
�t�

1

Γ(�+1)
−

�2t2�
1

Γ(2�+1)

)2]
,

= at
�
1

[
1

Γ(�+1)
+ �t�

1

(
1

(Γ(�+1))2
−

1

Γ(2�+1)

)
+ �2t2�

1

(
1

(Γ(�+1))3
−

2

Γ(�+1)Γ(2�+1)
+

1

Γ(3�+1)

)]
.

Again solving the Eq.  (4) with the initial condition q(t1) = 0 and using the 
Laplace transform method, we get

q(T) = −S gives

(2)
d(q(t))

dt
= −a for t1 ≤ t ≤ T ,

(3)C
a
D�

t
q(t) + �q(t) = −a for 0 ≤ t ≤ t1,

(4)C
a
D�

t
q(t) = −a for t1 ≤ t ≤ T .

(5)q(t) = WE�,1(−�t
�) − at�E�,�+1(−�t

�) for 0 ≤ t ≤ t1,

(6)

= W
[
1 −

�t�

Γ(� + 1)
+

�2t2�

Γ(2� + 1)

]
−at�

[
1

Γ(� + 1)
−

�t�

Γ(2� + 1)
+

�2t2�

Γ(3� + 1)

]
,

(7)= W − (W� + a)
t�

Γ(� + 1)
+ (W�2 + a�)

t2�

Γ(2� + 1)
− a�2

t3�

Γ(3� + 1)
.

(8)q(t) = −a
(t − t1)

�

Γ(� + 1)
for t1 ≤ t ≤ T .

S = a
(T − t1)

�

Γ(� + 1)
.
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Therefore the economic order quantity (EOQ) is Q = W + S.
Thus,

4.1 � Various relevant costs

Holding Cost: In an inventory costs related to unsold item are known as holding 
costs. A company’s holding expenses consist of the cost of damaged or spoilt 
items as well as labour, storage space, and insurance.

Generalized total Holding cost is HC�(T , t1) and is defined by

Purchasing cost: Purchasing cost refers to the complete cost of the good or service, 
including any applicable taxes, shipping charges, additional fees, and contingencies.

Total Purchasing cost per cycle is PC�(T , t1) and is defined by

Deteriorating Cost: Deterioration is the inability to use an item for its intended use 
due to decay, damage, evaporation, spoiling, obsolescence, loss of utility, pilferage, 
or loss of marginal values of a commodity.

Total Deteriorating Cost per cycle is DC�(T , t1) and is defined by

(9)

Q = at�
1

[
1

Γ(� + 1)
+ �t�

1

(
1

(Γ(� + 1))2
−

1

Γ(2� + 1)

)

+ �2t2�
1

(
1

(Γ(� + 1))3
−

2

Γ(� + 1)Γ(2� + 1)
+

1

Γ(3� + 1)

)]
+ a

(T − t1)
�

Γ(� + 1)
.

HC�(T , t1) = C1 ∫
t1

0

q(t)dt,

= C1 ∫
t1

0

[
W − (W� + a)

t�

Γ(� + 1)
+ (W�2 + a�)

t2�

Γ(2� + 1)
− a�2

t3�

Γ(3� + 1)

]
dt,

= C1

[
Wt1 − (W� + a)

t�+1

Γ(� + 2)
+ (W�2 + a�)

t2�+1

Γ(2� + 2)
− a�2

t3�+1

Γ(3� + 2)

]
.

PC�(T , t1) = C2W + C2 ∫
T

t1

adt,

= C2W + C2a(T − t1).

DC�(T , t1) = �C3 ∫
t1

0

q(t)dt,

= �C3

[
Wt1 − (W� + a)

t�+1

Γ(� + 2)
+ (W�2 + a�)

t2�+1

Γ(2� + 2)
− a�2

t3�+1

Γ(3� + 2)

]
.
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Shortage Cost: In inventory costs associated with shortages are those incurred when 
a company runs out of stock, such as: Time lost for the unavailability of raw materi-
als. Cost of obsolescence, theft, and shrinking.

Total Shortage Cost per cycle is SC�(T , t1) and is defined by

Salvage value: Salvage value is an asset’s estimated book value after completion of 
depreciation.

Total Salvage value per cycle is SV�(T , t1) and is defined by

Total generalized Inventory Cost is

Therefore the generalized Average Inventory Cost per unit time is denoted by 
TAC�(T , t1) and is defined by

SC�(T , t1) = −C4 ∫
T

t1

q(t)dt,

= aC4

(T − t1)
�+1

Γ(� + 2)
.

SV�(T , t1) = �C� ∫
t1

0

q(t)dt,

= �C�

[
Wt1 − (W� + a)

t�+1

Γ(� + 2)
+ (W�2 + a�)

t2�+1

Γ(2� + 2)
− a�2

t3�+1

Γ(3� + 2)

]
.

TC�(T , t1) = A + HC�(T , t1) + PC�(T , t1) + DC�(T , t1) + SC�(T , t1) − SV�(T , t1),

= A + a(C1 + �C3 − �C� )

(
1

Γ(� + 1)
+

1

Γ(� + 1)

)
t�+2
1

+ a�(C1 + �C3 − �C� )

(
1

Γ(2� + 2)
+

1

(Γ(� + 1))2
−

1

Γ(2� + 1)

−
1

Γ(� + 1)Γ(� + 2)

)
t2�+1
1

+ a�2(C1 + �C3 − �C� )

(
1

(Γ(� + 1))3
−

2

Γ(� + 1)Γ(2� + 1)
+

1

Γ(3� + 1)

−
1

(Γ(� + 1))2Γ(� + 2)

+
1

Γ(� + 2)Γ(2� + 1)
+

1

Γ(� + 1)Γ(2� + 2)
−

1

Γ(3� + 2)

)
t3�+1
1

+ C2a(T − t1) + C4a
(T − t1)

�+1

Γ(� + 2)

+ C2at
�

1

[
1

Γ(� + 1)
+ �t�

1

(
1

(Γ(� + 1))2
−

1

Γ(2� + 1)

)
−

�2t2�
1

Γ(� + 1)Γ(2� + 1)

]
.
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Therefore, the memory dependent proposed fractional order inventory model writ-
ten as following

TAC�(T , t1) =
1
T
[TC�(T , t1)]

=
[

A + a(C1 + �C3 − �C� )
(

1
Γ(� + 1)

− 1
Γ(� + 2)

)

t�+21

+ a�(C1 + �C3 − �C� )
(

1
Γ(2� + 2)

+ 1
(Γ(� + 1))2

− 1
Γ(2� + 1)

− 1
Γ(� + 1)Γ(� + 2)

)

t2�+11 + a�2(C1 + �C3 − �C� )
(

1
(Γ(� + 1))3

− 2
Γ(� + 1)Γ(2� + 1)

+ 1
Γ(3� + 1)

− 1

(Γ(� + 1)
)2

Γ(� + 2)
+ 1

Γ(� + 2)Γ(2� + 1)
+ 1

Γ(� + 1)Γ(2� + 2)

− 1
Γ(3� + 2)

)

t3�+11 + C2a(T − t1) + C4a
(T − t1)�+1

Γ(� + 2)
+ C2at�1

[

1
Γ(� + 1)

+ �t�1

(

1
(Γ(� + 1))2

− 1
Γ(2� + 1)

)

−
�2t2�1

Γ(� + 1)Γ(2� + 1)

]]

T−1.

(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min TAC�(T , t1)

=

�
A + a(C1 + �C3 − �C� )

�
1

Γ(�+1)
+

1

Γ(�+1)

�
t�+2
1

+ a�(C1 + �C3 − �C� )

�
1

Γ(2�+2)
+

1

(Γ(�+1))2
−

1

Γ(2�+1)

−
1

Γ(�+1)Γ(�+2)

�
t2�+1
1

+ a�2(C1 + �C3 − �C� )

�
1

(Γ(�+1))3
−

2

Γ(�+1)Γ(2�+1)

+
1

Γ(3�+1)
−

1

(Γ(�+1))2Γ(�+2)
+

1

Γ(�+2)Γ(2�+1)
+

1

Γ(�+1)Γ(2�+2)

−
1

Γ(3�+2)

�
t3�+1
1

+ C2a(T − t1) + C4a
(T−t1)

�+1

Γ(�+2)
+ C2at

�
1

�
1

Γ(�+1)

+ �t�
1

�
1

(Γ(�+1))2
−

1

Γ(2�+1)

�
−

�2t2�
1

Γ(�+1)Γ(2�+1)

��
T−1

Subject to T ≥ 0,

t1 ≥ 0.

Table 1   Table for optimal value 
of starting shortage time, t∗

1
 , 

optimal ordering interval, T∗
�
 , 

and minimized total average 
cost, TC∗

�
 , different values of 

memory index � (0.4 ≤ � ≤ 1)

� t
∗
1

T
∗
�

TC
∗
�

0.4 7.4094 68.2842 21.5938
0.5 3.4939 36.7903 23.9188
0.6 1.2153 18.6357 26.2099
0.7 0.6440 13.6575 29.0938
0.8 0.5107 10.6984 31.0463
0.9 0.4753 8.5801 32.9927
1.0 0.4550 7.4001 34.4225
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In order to estimate various costs, starting shortage time, ordering interval for dif-
ferent values of memory parameters assigned in the proposed model, a numerical 
example with some experimental data of the parameters is now shown.

5 � Numerical examples

Here we illustrate the inventory model considering a numerical example. The values 
of parameters with proper units given below:

Then using Matlab Programming we get the optimum value of starting shortage time 
t∗
1
 , optimum total cycle time T∗

�
 and minimized total average cost TC∗

�
 of the consid-

ered memory dependent inventory model and the outcomes are given in Table 1.
We notice from Table 1, and Fig. 2 total average cost achieves its minimum for 

� = 0.4 and attains its maximum for � = 1 i.e memory dependent inventory model 
has minimum total average cost in comparison to the independent of memory. The 
minimized total average cost becomes negative for 𝛼 < 0.4 . This means that there 
is no effective business for 𝛼 < 0.4 . So, we count memory effect from � = 0.4 . The 

A =60;a = 12;� = 0.05;

C1 =0.5;C2 = 1.5;C3 = 3;C4 = 2.5;C� = 2.8

Fig. 2   Graph of memory index � and minimized total average cost
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system-imposed memory steadily improves the optimal ordering interval, which 
achieves its maximum value at its robust memory level. The company policy will 
therefore be stable and continue to be extensive for deep memory level, which is 
extremely thorough. This might occur as a result of their previous experience’s 
broad prudence. As a result, the memory dependent generalized inventory model 
has a broad vision of advantage that will be taken into account right away in light 
of a consistent company policy. Additionally, long memory affected systems have 

Table 2   Table for sensitivity 
analysis of the parameters for 
� = 0.4

Parameter Parameter 
change (%)

t
∗
1

T
∗
�

TAC
∗
�

A +50 7.3882 68.0793 22.0331
+10 7.3797 67.9428 21.6816
−10 7.4390 68.6256 21.5059
−50 7.4316 68.4891 21.1544

a +50 4.2974 40.1626 31.0266
+10 6.4502 62.4812 23.4803
−10 7.6485 74.0872 19.7072
−50 10.5213 97.5213 12.1610

� +50 7.1903 69.7853 21.1327
+10 7.0776 68.6257 21.5089
−10 7.0212 67.9428 21.6749
−50 6.9084 66.7720 21.9628

C
1

+50 7.0705 68.4893 21.5203
+10 7.0536 68.3320 21.5791
−10 7.0451 68.2364 21.6085
−50 7.0282 68.0795 21.6672

C
2

+50 4.3706 40.9706 29.9543
+10 6.4854 62.1387 23.2659
−10 7.6133 74.4321 19.9217
−50 9.7281 95.5979 13.2332

C
3

+50 7.0564 68.3525 21.5717
+10 7.0508 68.2979 21.5894
−10 7.0480 68.2706 21.5982
−50 7.0423 68.2160 21.6158

C
4

+50 6.3444 61.2511 23.6863
+10 6.9154 66.9868 22.0123
−10 7.1833 69.5816 21.1753
−50 7.7543 75.3212 19.5013

C� +50 5.4280 53.2616 26.5379
+10 6.7674 65.5529 22.4523
−10 7.3314 71.0157 20.7204
−50 8.6707 83.3067 16.8745
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a wider optimal ordering interval than memory less systems and have too little total 
average cost that is minimized when compared to memory less systems.

5.1 � Sensitivity analysis

A sensitivity analysis has been carried out to demonstrate the implications of change 
in system parameters A, a, � , C1 , C2 , C3 , C4 , C� on the optimal ordering interval 

Table 3   Table for sensitivity 
analysis of the parameters for 
� = 0.9

Parameter Parameter 
change (%)

t
∗
1

T
∗
�

TAC
∗
�

A +50 0.4249 7.6706 36.4892
+10 0.4658 8.4085 33.6920
−10 0.4848 8.7517 32.2934
−50 0.5257 9.4860 29.4963

a +50 0.3422 6.2206 42.3309
+10 0.4482 8.0825 34.8604
−10 0.5024 9.0777 31.1251
−50 0.6084 10.9396 23.6545

� +50 0.4749 8.5724 33.0223
+10 0.4752 8.5784 32.9985
−10 0.4754 8.5818 32.9870
−50 0.4757 8.5878 32.9649

C
1

+50 0.4748 8.5715 33.0405
+10 0.4751 8.5775 33.0023
−10 0.4754 8.5827 32.9832
−50 0.4758 8.5887 32.9649

C
2

+50 0.3470 6.2635 42.0593
+10 0.4487 8.1082 34.8060
−10 0.5019 9.0520 31.1794
−50 0.6036 10.8967 23.9262

C
3

+50 0.4751 8.5767 33.0071
+10 0.4752 8.5801 32.9956
−10 0.4754 8.5802 32.9899
−50 0.4755 8.5835 32.9784

C
4

+50 0.4183 7.5505 36.8640
+10 0.4639 8.3742 33.7670
−10 0.4867 8.7860 32.2185
−50 0.5323 9.6097 29.1215

C� +50 0.4040 7.2931 37.9416
+10 0.4582 8.2712 34.1803
−10 0.4924 8.8889 31.8051
−50 0.5466 9.8671 28.0438



1 3

OPSEARCH	

T∗
�
 , optimal starting shortage time t∗

�
 , and minimized total average cost TAC∗

�
 . The 

parameters are increased by 10% , 50% also decreased by 10% , 50% , separating each 
parameter and leaving the others constant for various memory indexes � = 0.4 and 
� = 0.9.

From Tables  2, 3, 4 and 5, the conclusions about sensitivity analysis has been 
derived as follows: 

(i)	 For the proposed inventory model the parameters a, C2 are most sensitive.
(ii)	 Also the parameters a, C2 , C� for weak as well as strong memory are most sensi-

tive.
(iii)	 For the proposed inventory model with memory the parameters � , C1 , C3 for weak 

as well as strong memory are not sensitive
(iv)	 The inventory model heavily relies on the constant demand a. A drop in a causes 

a decrease in the total minimized cost, whereas a rise in a causes an increase in 
the minimized total average cost.

Table 4   Table for the impact 
of changing parameters on the 
minimized total average cost at 
� = 0.4

 Parameter  Parameter change (%) Change of 
minimized
total aver-
age cost (%)

 A −50 to −10 1.662
−10 to +10 0.817
+10 to +50 1.621

 a −50 to −10 62.052
−10 to +10 19.146
+10 to +50 32.139

 � −50 to −10 1.310
−10 to +10 0.766
+10 to +50 1.749

 C
1

−50 to −10 0.270
−10 to +10 0.136
+10 to +50 0.272

 C
2

−50 to −10 50.543
−10 to +10 16.787
+10 to +50 28.748

 C
3

−50 to −10 0.081
−10 to +10 0.041
+10 to +50 0.082

 C
4

−50 to −10 8.584
−10 to +10 3.953
+10 to +50 7.605

 C� −50 to −10 22.791
−10 to +10 8.358
+10 to +50 18.197
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(v)	 For the proposed inventory model the parameters A, C4 are mild sensitive.

6 � Conclusions

The relevance of memory effects in inventory related problem has been studied 
here. It is noted that the foremost objective of any inventory related problem is to 
maximize the profit of some business policy by minimizing the entire total cost. It 
is observed from our study that memory effect (past experience) has fundamental 
role in inventory related problem and which helps policy maker to chose appropriate 
decision to achieve the sustainable business policy. There is no doubt that an inven-
tory related problem with total average cost, the optimal ordering interval and start-
ing shortage time gives better outcome for the consideration of memory effect. We 
have incorporated the concept of memory in the concerned inventory model with the 
help of fractional calculus. The fractional order of the differentiation is the indicator 

Table 5   Table for the impact 
of changing parameters on the 
minimized total average cost at 
� = 0.9

Parameter  Parameter change (%)  Change of 
minimized
total average 
cost (%)

 A −50 to −10 9.483
−10 to +10 4.331
+10 to +50 8.302

 a −50 to −10 31.582
−10 to +10 12.001
+10 to +50 21.430

 � −50 to −10 0.067
−10 to +10 0.035
+10 to +50 0.072

 C
1

−50 to −10 0.116
−10 to +10 0.058
+10 to +50 0.116

 C
2

−50 to −10 30.315
−10 to +10 11.631
+10 to +50 20.839

 C
3

−50 to −10 0.035
−10 to +10 0.017
+10 to +50 0.035

 C
4

−50 to −10 10.635
−10 to +10 4.806
+10 to +50 9.172

 C� −50 to −10 13.412
−10 to +10 7.468
+10 to +50 11.004
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of the memory index in the whole model. It is observed that the memory affects 
effectively on total average cost and long memory effect will give powerful result 
in comparison of short memory or memoryless system. Here we also calculated the 
starting shortage time and ordering interval for which the total average cost is mini-
mum. A supporting numerical example is provided here to demonstrate our notion 
from a practical standpoint. The results show that the memory dependent inventory 
model has more significant results than our traditional classical inventory model.

Here, the input data have been taken into account to hypothetically demon-
strate the significance of the suggested model. The findings are easily applicable to 
real-world situations, but further experimental research is needed to show how to 
approach this issue effectively. Therefore, it cannot always be guaranteed that the 
suggested model will provide a result that is practical for any given set of presented 
data during any experimental research. Instead, it can be guaranteed that using the 
data with this kind of suggested numerical value, the current model will undoubt-
edly produce the best results. Practically speaking, a number of problems that arise 
in actual life situations could have an impact on how radical the presented data is. 
In the current study, it is primarily recommended to investigate optimal total costs, 
optimal ordering intervals, optimal starting shortage time in the presence of vari-
ous memory indices. A decision-maker can gain some knowledge or ideas about the 
properties of parameters from the entire debate and results.

Basically memory-dependent inventory models can use the historical data to opti-
mize order quantities and reorder points. By analyzing past demand patterns, these 
models can better predict future demand and adjust inventory level accordingly. The 
suggested inventory model gives an inventory manager the right decision-support 
for choosing the most cost-effective quantities of replenishment orders for deterio-
rating items while taking customer purchasing behavior into account. Results from 
our study can be used to manage inventories in situations that are comparable. For 
instance, decisions on inventory replenishment for circumstances where a produc-
tion company produces a perishable good for sale in its own retail outlets can also 
be addressed. Any on-line retailers and e-marketing companies promoting a product 
will inevitably take the customer memory effect into serious consideration; in this 
regard, present model will be quite useful. When a product is not in stock in an on-
line store, the consumer places an order, and the product is subsequently stocked 
and shipped to the client and also for the items where expiration dates are critical, 
deterioration costs, holding costs, and waste can all be reduced. Comparing the two 
inventory models from a practical standpoint, the fractional order inventory model is 
more helpful in the actual system.

Future study will take into account the wide range of works related to the mem-
ory dependent inventory model in numerous aspects. More research is necessary to 
examine the properties of the suggested memory-dependent model while imposing 
various practical factors, such as reliability, promotional effort, trade credit policy, 
and others. In various uncertain environments (such as fuzzy, neutrosophic, etc.), 
other approaches to this memory-dependent inventory model can be devised to 
express the uncertainty for the purpose of a more realistic sense.
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